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LEl'TER TO THE EDITOR 

Dynamic equivalence of a two-dimensional quantum electron 
gas and a classical harmonic oscillator chain with 
an impurity mass 

M Howard Lee, J Florencio J r t  and J HongS 
Department of Physics, University of Georgia, Athens, GA 30602, USA 

Received 24 January 1989 

Abstract. There is an exact equivalence in the time-dependent behaviour of a zero- 
temperature two-dimensional interacting electron gas at long wavelengths and a classical 
harmonic oscillator chain with one impurity mass. The mass difference m - m,, where m, 
is the impurity mass, acts as the electron-electron interaction. Time evolution is asymmetric 
in m - m, about m = m,. 

Equivalence between two seemingly unrelated physical problems can often provide 
useful insight as shown by, for example, Lieb et a1 for an antiferromagnetic spin$ XY 
chain and a free fermion model [l]. In a similar vein we show that there is an exact 
equivalence in the time-dependent behaviour of a quantum electron gas and a classical 
harmonic oscillator (HO) chain. According to the method of recurrence relations [2,3], 
the time evolution of a dynamical variable, say A, depends on two dynamical parameters 
only: dimensionality d = (fofi . . . fd- l )  and hypersurface u = ( A , A z . .  . Ad-,),  A V  = 
~~f,~[/~~f,-,~[, where thef, are the basis vectors which span S, the realised d-dimensional 
Hilbert space of A ( t ) ,  and l l f , l l  is the norm of f v .  Different systems thus can be 
dynamically equivalent (i.e. they can have the same autocorrelation function) if they 
have the same d and u. We show here that a T = 0 2~ electron gas at long wavelengths 
and a classical ID  N N  coupled HO chain with one impurity mass both belong to the 
same dynamical class. 

For the 2~ electron gas there now exists a complete solution for the time evolution 
of density fluctuations as long wavelengths [4,5]. The time evolution in a HO chain 
has been studied by several people, almost always via normal coordinates [ 6 ] .  The 
recurrence relations analysis, however, is accomplished in the original lattices. As a 
result, one can, for example, follow the delocalisation of an initial excitation from site 
to site. An impurity mass can greatly complicate the standard analysis, but in the 
recurrence relations analysis it causes only a minor modification of the realised Hilbert 
space. 

t Present address: Department of Physics, Pennsylvania State University, Altoona, PA, USA. 
$ On leave of absence from Seoul National University, Korea. 
5 In the standard analysis one solves canonical equations in one form or another. In the recurrence relations 
analysis one obtains admissible solutions for a realised recurrence relation (RRII),  which are the solutions 
of the original canonical equations. 
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For the 2~ electron gas, we consider the density fluctuation operator p k  as a 
dynamical variable A, where k is the wavevector measured in units of the Fermi wave 
vector kF. To order k, the realised Hilbert space of p k ( t )  is given by d =CO and 
U = (2s - ‘p2 /4 ,  p 2 / 4 ,  p 2 / 4 ,  . . .), where p = 2 k ~ ~ ,  where is the Fermi energy, s-’ = 
1 + 2 r / p 2 ,  where r = 2.rrpe2/m, which is essentially the electron-electron interaction 
in 2 ~ .  Other symbols have their usual meaning, e.g. p is the electron number density. 
Since the interaction is repulsive, 1 S s-l S 00, where s - l =  1 and 00 represent the ideal 
and non-ideal limits of the electron gas, respectively. 

We now consider a chain of N HO with periodic boundary conditions, where N 
is an even number. Each spring has the same force constant K.  Let one oscillator have 
mass m, (designated as a tagged mass) and all others an identical mass m each. We 
introduce the parameter A = m / m o ,  where A = 0 and 00 represent the heavy and light 
impurity mass limits, respectively. We choose A = Po the momentum of the tagged 
mass. The realised space of P,(t) is found to have the following properties: 

d = N + 1  U =  ( 2 A ~ / m ,  K/m, K / m , .  . . , ~ / m ,  2 ~ / m ) .  

For A = 1 (equal-mass limit) there is a front-end symmetry in U. This symmetry is 
broken when N + CO; and this symmetry breaking gives rise to irreversibility. 

When N + 00, the Hilbert space of Po( t )  becomes exactly the same as the space of 
&( t )  up to some scale factors, which we fix by taking p 2 / 4  = K / m  and s - l =  A. Hence 
the time evolution of Po in the equal-mass chain ( A  = 1) exactly corresponds to the 
time evolution of P k  in the ideal 2~ electron gas (s-’ = 1). Similarly the light impurity 
regime of the HO chain ( A  > 1) corresponds to the non-ideal or Coulomb electron gas 
(normal fermions). The heavy impurity regime ( A  < 1) would correspond to an attrac- 
tively interacting electron gas (‘abnormal fermions’). If such an ‘abnormal fermion’ 
system existed, it would just become bound at A = O .  There are no time evolutions 
known for this novel system, but one can obtain them from the heavy impurity regime 
of the HO chain. Thus we seek a general solution. 

Now p k (  t )  and Po( t )  satisfy, respectively, the Heisenberg and canonical equations. 
Equivalently, both dynamical variables, say A, satisfy the generalised Langevin 
equation (GLE): 

T + j o ‘ d t ’ M ( t - r . ) a ( t ’ ) =  F ( t )  

where M ( t )  is the memory function and F ( t )  is the random force [ 2 ] .  The method 
of recurrence relations formally solves the GLE by giving A( t ) ,  and F (  t ) ,  an orthogonal 
expansion in the fu, i.e. 

u = l  

where the a,  and the b, are certain correlation functions of time. For the electron gas, 
for example, ao(t )  = ( & ( t ) ,  & ) / ( P k ,  p k ) ,  where the inner product means the Kubo 
scalar product. [ 2 ] .  For the HO chain, a o ( t )  = (Po(t)PO)/(P$, where (. . .) means a 
classical ensemble average. The space of the random force F (  t ) ,  say SI,  is a subspace 
of S, the space of A(t) ,  and its hypersurface is denoted by ut = (A2A3.  . . Ad-’) .  Also, 
M ( t )  = A , b l ( t ) .  
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In the ideal or equal-mass limit (s-’ = A  = l ) ,  one has U =  (2111 . . .) and (T’ = 
(1 11 . . .) up to some common scale factors, set to unity here. They imply that 

a,(t) = 2’p-”J,(pt) U 2 0  (4) 

b , ( t )  = 2”p-’~J , (p t ) / t  U 2 1  ( 5 )  

where J, is the Bessel function of order u t .  The interaction or impurity mass changes 
(T but not (T,, hence a,(?)  but not b, ( t ) .  We take advantage of a constant u1 to obtain 
a general solution for a,( r )  via a connecting relation [2] 

ao( z )  = (z + AI bl(  z))-’ ( 6 )  

where ao(z) and bl(z)  are, res ectively, the Laplace transforms of ao(t )  and b , ( t ) .  
From (9, b , ( z ) = 2 ~ - ~ (  + z + p  -2). Hence 

(7) 
exp(zt) 

ao( t )  = - dz exp( zt)ao( z )  = - dz 
21ri 1. 21riA IC ~ Z + J Z ~ + F ~  , 

where p = A - ’ -  1. Given ao(?) from (7), we can obtain all other a, ( t )  by a recurrence 
relation (RRII). Hence, the time evolution of Po can be completely characterised by 
this analysis$. 

We see in (7) that there are, in addition to a branch cut, singularities in each of 
two branches, which are determined by the sign of pP. To obtain these singularities 
explicitly, we write the relevant part of (7) as 

where a = 1 - p z  = (2A - 1)/A2. Clearly the locations of isolated poles in a given branch 
(i.e. a given sign of p) depend on the sign and size of a-’. In figure l ( a ) ,  a-’ is 
plotted against A, with p superimposed therein. 

Figure 1. ( a )  The solid curve is a plot of (I-’ against A. The function p = A - ’  - 1 is plotted 
as a broken curve. (b)  Poles in the first branch (full lines), poles in the second branch 
(broken lines) and the branch cut (zigzag). 

t The solution ao(t)  = Jo(pt) is well known. See [4,6]. 
$ The basis vectors f, can be obtained by RRI, given that fo = Po or p r .  See [2]. 
B The denominator pz +- is closely related to a function which appears in the Joukowski transforma- 
tion in the theory of aerofoils. See, e.g., [7]. 
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There are three distinct regions. In region I we have 1 < A < m, where a-1 > 1 and 
p < 0. There are a pair of poles on the imaginary axis beyond the branch points on 
the first or physical sheett. In region 11, f < A < 1, where a-'> 1 and p > 0. There are 
also the same poles of region I but on the second or non-physical sheet. In region 
111, O <  A <+, where a-'<O and p > 0. There is one pole on the negative real axis, 
also on the non-physical sheet. In figure l (b) ,  these poles are illustrated as a function 
of A for a given branch. 

Contributions to (7) from isolated poles are limited to those on the physical sheet, 
i.e. the poles of region IS. Contributions from the branch cut are, however, similar in 
each of the three regions depending only on a-'. They are identical in regions I and 
I1 since both regions have the same a-'. Region I11 can be subdivided into IIIA 
( i - l >  -1) and IIIB (a-'< -1). In subregion IIIA the solution of regions I and I1 
applies with -a. In subregion IIIB there is a different solution. 

In region I, the complete solution is 
m 

ao(t) = (21Pl/(1 +Ipl)cos at+ c (-a)n(a/dCLf)2nJ1(CLf)/CLf (8) 
n=O 

where R = (a- ' j~')~' ' .  The above solution without the cosine term is also the solution 
in regions I1 and IIIA as previously noted. 

In subregion IIIB, the solution is 

n=1  

where p = ~ a ~ / ( l + ~ a ~ )  = (1 -2A)/(1 - A ) 2 .  In region 111, this new parameter p ranges 
from 0 to 1. Thus, the above solution (9) also applies to subregion IIIA. When p = 1, 
(9) is divergent except when t = 0, wherein ao( t = 0) = 1. Thus, no expansion about 
A = 0 is possible for an arbitrary time§. 

We shall briefly discuss the equivalence aspect of our solutions as A varies from 
CO to 0. When A = CO (m = CO, mo < CO), one gets ao( t )  = cos Rat, Rm = (2~/111~)''*, i.e. 
the tagged mass bound to two stationary wallsll. In the electron gas it is exactly the 
condition in which single-particle motions are either frozen or completely overwhelmed 
by the plasma oscillation (strong-coupling limit). As A + 1, the initial simple oscillatory 
motion becomes perturbed by the 'moving walls'. In the equal-mass limit, it disappears 
entirely as when the electrons no longer interact. But in this limit the motion of the 
tagged mass is indistinguishable from the motions of other masses in the chain. Hence, 
it is more nearly in phase and its autocorrelation function decays more slowly, i.e. 
ao( t + CO) - t - ' I 2  cos(pt - r/4). It is just the behaviour of long-lived electron-hole pair 
excitations, existing very near the Fermi surface in the weak-coupling limit [9]. 

As A + 0, the motion of the tagged mass begins to go out of phase. For the electrons 
(now abnormal fermions), the excitations tend to be localised owing to an attractive 

t The physical sheet is one on which the solutions obtained for a,(r)  are admissible, i.e. they satisfy R R I I .  
Necessary conditions are a,( r = 0) = 1 and da,( t = O)/dr = 0. This is the only branch which is physically 
relevant. See [8]. 
$ For the electron gas these are just the plasma poles, with the branch cut representing single-particle 
excitations. 
8 An expansion solution is possible only under some special conditions, e.g. A t  < 1 .  In contrast, (8) is a 
general expansion about A - '  = 0 and converges even at CY = 1.  
11 One can also obtain A =CO by taking m <CO and m, = 0. For this case the isolated poles diappear, i.e. no 
cosine term in (8), and a,(r) = 2 J , / t ,  the same as that for A =f. 
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interaction, thus precluding any formation of plasma-like collective modes. For 0 < A < 
1, the motions of the tagged mass represent the scattering states of the abnormal 
fermions, which therefore cannot be continuously changed into the state of A =0 ,  a 
bound state. Time evolutions evidently are asymmetric in the mass difference m - mo 
about m = mo, which is equivalent to the electron-electron interactiont. 

Finally, a one-impurity HO chain has a subspace SI independent of A. This is just 
the condition that the generalised RPA theory of an electron gas [9] is exactly valid. 
Hence, selectively adding more impurity masses to the chain is similar to systematically 
correcting the RPA. One particular limit of a homogeneous multi-impurity chain is a 
diatomic chain. This limiting process, in effect, forms new branch cuts by extending 
the isolated poles of a one-impurity chain. The two chains differ in time evolution to 
the extent of this difference in the analytic structure [ll].  

We wish to thank Professors Katja Lindenberg and Paolo Grigolini for useful comments. 
This work has been supported in part by NSF, ARO and also by KOSEF. 

References 

[ l ]  Lieb E H, Schultz T and Mattis D 1961 Ann. Phys., N Y  16 407 
[2] Lee M H 1982 Phys. Rev. B 26 1072; 1982 Phys. Rev. Lett. 49 1072; 1983 J. Math. Phys. 24 2512 
[3] Grigolini P, Grosso G, Pastor Parravicini G and Sparpaglione M 1983 Phys. Rev. B 27 7342 

Cini M and D'Andrea A 1988 J. Phys. C: Solid State Phys. 21 193 
Bavaud F 1987 J. Stat. Phys. 46 753 
Sherman A 1988 Phys. Stat. Sol. b 145 319 
Znojil M 1987 Phys. Rev. A 35 2448 
Gagliano E R and Balseiro C A 1988 Phys. Rev. B 38 11766 
Pires A S T 1988 Helv. Phys. Acta 61 988 

[4] Lee M H and Hong J 1985 Phys. Rev. B 32 7734 
[5] Holas A, Nagano S and Singwi K S 1983 Phys. Reo. B 27 5981 

Stern F 1967 Phys. Rev. Lett. 18 549 
Rajagopal A K 1977 Phys. Rev. B 15 4264 

van Hemmen J L 1980 Phys. Rep. 65 43 
Maradudin A A, Montroll E W, Weiss G H and lpotova I P 1971 Theory of Lattice Dynamics (New 

Rubin R J 1960 J. Math. Phys. 1309 
Mazur P and Montroll E 1960 J. Math. Phys. 1 70 
Cukier R I 1972 Physica 61 321 
Hynes J T 1974 J. Star. Phys. 11 257 
Fox R F 1983 Phys. Rev. A 21 3216 
Grigolini P 1985 Adu. Chem. Phys. 62 1 

[7] Fuchs B A and Shabat B V 1964 Functions of a Complex Variable (Oxford: Pergamon) pp 89-100 
[8] Lee M H 1983 Phys. Rev. Lett. 51 1227 
[9] Mahan G D 1981 Many Particle Physics (New York: Plenum) 

[lo] Lee M H, Hong J and Sharma N L 1984 Phys. Rev. A 29 1561 
[ l l ]  Yu M B and Lee M H 1989 to be published 

[6] Li K H 1986 Phys. Rep. 134 1 

York: Academic) 

t The HO chain is dynamically not equivalent to the electron gas in D = 1 and 3. If  D = 1, d = 2. If D = 3, 
d = m ,  but 0=(4s- ' /3 ,2 ,  ,... 4v2/(4v2-1), ... ) in units of p 2 / 4 = 1 .  See [IO]. 


